Fourier series - tasks (I- part)

Example 1.

Function $y=|x|$ developed in Fourier series on the interval $[-\pi, \pi]$

Solution:

First, we draw a picture:

Obviously, the function is even (figure is symmetric with respect to the y-axis), and we will use the formula:
$a_{0}=\frac{2}{\pi} \int_{0}^{\pi} f(x) d x$
$a_{n}=\frac{2}{\pi} \int_{0}^{\pi} f(x) \cos n x d x \quad$ and $b_{n}=0$
$f(x)=\frac{1}{2} a_{0}+\sum_{n=1}^{\infty} a_{n} \cos n x$
$a_{0}=\frac{2}{\pi} \int_{0}^{\pi} f(x) d x=\frac{2}{\pi} \int_{0}^{\pi} x d x=\frac{2}{\pi} \cdot\left(\frac{x^{2}}{2}\right) /{ }_{0}^{\pi}=\frac{2}{\pi} \cdot\left(\frac{\pi^{2}}{2}\right)=\pi$

Next we ask:
$a_{n}=\frac{2}{\pi} \int_{0}^{\pi} f(x) \cos n x d x=a_{n}=\frac{2}{\pi} \int_{0}^{\pi} x \cos n x d x=$
This integral will be solved with the help of partial integration, and first without borders...
$\int x \cos n x d x=\left|\begin{array}{cc}x=u & \cos n x d x=d v \\ d x=d u & \frac{1}{n} \sin n x=v\end{array}\right|=x \cdot \frac{1}{n} \sin n x-\int \frac{1}{n} \sin n x d x=\frac{x \sin n x}{n}-\frac{1}{n} \int \sin n x d x=$
$=\frac{x \sin n x}{n}+\frac{1}{n} \frac{1}{n} \cos n x=\frac{x \sin n x}{n}+\frac{1}{n^{2}} \cos n x$
Now we put borders:

$$
\begin{aligned}
& \left(\frac{x \sin n x}{n}+\frac{1}{n^{2}} \cos n x\right) /{ }_{0}^{\pi}=\left(\frac{\pi \sin n \pi}{n}+\frac{1}{n^{2}} \cos n \pi\right)-\left(\frac{0 \cdot \sin n \cdot 0}{n}+\frac{1}{n^{2}} \frac{\cos n \cdot 0}{\text { this is } 1}\right)= \\
& =\frac{1}{n^{2}} \cos n \pi-\frac{1}{n^{2}}=\frac{1}{n^{2}}(\cos n \pi-1)
\end{aligned}
$$

Then:
$a_{n}=\frac{2}{\pi} \int_{0}^{\pi} f(x) \cos n x d x=\frac{2}{\pi} \cdot \frac{1}{n^{2}}(\cos n \pi-1)=\frac{2}{\pi n^{2}}(\cos n \pi-1)$

Of course, that n takes values $1,2,3 \ldots$

Expression $\cos n \pi$ have values:
for $\mathrm{n}=1$ is $\cos \pi=-1$
for $n=2$ is $\cos \pi=1$
for $\mathrm{n}=3$ is $\cos \pi=-1$
for $\mathrm{n}=4$ is $\cos \pi=1$
etc.

Therefore, it holds that $\cos n \pi=(-1)^{n}$

Then is $\quad a_{n}=\frac{2}{\pi n^{2}}\left((-1)^{n}-1\right)$
If n is even number, we have: $a_{2 n}=\frac{2}{\pi n^{2}}\left((-1)^{2 n}-1\right)=0$

If n is odd number, we have: $a_{2 n-1}=\frac{2}{\pi(2 n-1)^{2}}\left((-1)^{2 n-1}-1\right)=\frac{2}{\pi(2 n-1)^{2}} \cdot(-2)=\frac{-4}{\pi(2 n-1)^{2}}$

Let us return now to the formula for development:
$f(x)=\frac{1}{2} a_{0}+\sum_{n=1}^{\infty} a_{n} \cos n x=\frac{1}{2} \pi+\sum_{n=1}^{\infty}\left(\frac{-4}{\pi(2 n-1)^{2}}\right) \cos (2 n-1) x=\frac{1}{2} \pi+\frac{-4}{\pi} \sum_{n=1}^{\infty} \frac{\cos (2 n-1) x}{(2 n-1)^{2}}$
So :
$f(x)=|x|=\frac{1}{2} \pi-\frac{4}{\pi} \sum_{n=1}^{\infty} \frac{\cos (2 n-1) x}{(2 n-1)^{2}}$

Example 2.

Developed in Fourier series function $f(x)=\operatorname{sgn} x$ on the interval $[-\pi, \pi]$

Solution:

$\operatorname{sgn} x=\left\{\begin{array}{c}-1, \text { for } x<0 \\ 0, \text { for } x=0 \\ +1, \text { for } x>0\end{array}\right\} \quad$ Take a look :

If $x \neq 0$ then we have $\operatorname{sgn} x=\frac{x}{|x|}$

We need this function on the interval $[-\pi, \pi]$:

Obviously, the function is odd, and using the formula : $b_{n}=\frac{2}{\pi} \int_{0}^{\pi} f(x) \sin n x d x$
$f(x)=\sum_{n=1}^{\infty} b_{n} \sin n x$
$b_{n}=\frac{2}{\pi} \int_{0}^{\pi} f(x) \sin n x d x=\frac{2}{\pi} \int_{0}^{\pi} \sin n x d x=\frac{2}{\pi}\left(-\frac{\cos n x}{n}\right) /{ }_{0}^{\pi}=\frac{2}{\pi}\left(-\frac{\cos n \pi}{n}+\frac{\cos n \cdot 0}{n}\right)=$
$=\frac{2}{\pi}\left(-\frac{(-1)^{n}}{n}+\frac{1}{n}\right)=\frac{2}{\pi n}\left(1-(-1)^{n}\right)$
Again we distinguish between odd and even members:

For n - even number is $\mathrm{b}_{2 n}=0$
for n - odd number is $\mathrm{b}_{2 n-1}=\frac{2}{\pi(2 n-1)}(1+1)=\frac{4}{\pi(2 n-1)}$
Now go back to the starting formula for development and we have:
$f(x)=\sum_{n=1}^{\infty} b_{n} \sin n x=\sum_{n=1}^{\infty} \frac{4}{\pi(2 n-1)} \sin (2 n-1) x=\frac{4}{\pi} \sum_{n=1}^{\infty} \frac{\sin (2 n-1) x}{2 n-1}$
$\operatorname{sgn} x=\frac{4}{\pi} \sum_{n=1}^{\infty} \frac{\sin (2 n-1) x}{2 n-1}$

Example 3.

Function $f(x)=\left\{\begin{array}{cc}\pi, & -\pi \leq x<0 \\ x, & 0 \leq x \leq \pi\end{array}\right.$ develop into a trigonometric series.

Solution:

First, we notice that a given interval $[-\pi, \pi]$. This means we will use the formula:
$a_{0}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) d x \quad a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos n x d x \quad b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin n x d x$
Beware of one thing: since the function is given in this way we have to work two integrals. In first integral borders are $-\pi$ and 0 and function is $f(x)=\pi$, and when borders are 0 and π function is $f(x)=x$
$a_{0}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) d x=\frac{1}{\pi} \int_{-\pi}^{0} \pi d x+\frac{1}{\pi} \int_{0}^{\pi} x d x=\frac{1}{\pi} \pi \cdot x /{ }_{-\pi}^{0}+\frac{1}{\pi} \frac{x^{2}}{2} /_{0}^{\pi}=\pi+\frac{\pi}{2}=\frac{3 \pi}{2}$

$$
\begin{aligned}
a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos n x d x & =\frac{1}{\not t} \int_{-\pi}^{0} \not t \cos n x d x+\frac{1}{\pi} \int_{0}^{\pi} x \cos n x d x \\
& =\int_{-\pi}^{0} \cos n x d x+\frac{1}{\pi} \int_{0}^{\pi} x \cos n x d x
\end{aligned}
$$

Here we have the integral of the partial integration:
$\int x \cos n x d x=\left|\begin{array}{cc}x=u & \cos n x d x=d v \\ d x=d u & \frac{1}{n} \sin n x=v\end{array}\right|=x \cdot \frac{1}{n} \sin n x-\int \frac{1}{n} \sin n x d x=\frac{x \sin n x}{n}-\frac{1}{n} \int \sin n x d x=$
$=\frac{x \sin n x}{n}+\frac{1}{n} \frac{1}{n} \cos n x=\frac{x \sin n x}{n}+\frac{1}{n^{2}} \cos n x$

Now we return to a_{n} :
$\left.a_{n}=\int_{-\pi}^{0} \cos n x d x+\frac{1}{\pi} \int_{0}^{\pi} x \cos n x d x=\left.\frac{1}{n} \sin n x\right|_{-\pi} ^{0}+\frac{1}{\pi}\left(\frac{x \sin n x}{n}+\frac{1}{n^{2}} \cos n x\right)\right)_{0}^{\pi}$
$=\left[\frac{1}{n} \sin n \cdot 0-\frac{1}{n} \sin n(-\pi)\right]+\frac{1}{\pi}\left[\left(\frac{\pi \sin n \pi}{{\underset{\text { this is il }}{ } 0}_{n}^{n}}+\frac{1}{n^{2}} \cos n \pi\right)-\left(\frac{0 \sin n \cdot 0}{n_{\text {this is } 0}^{n}}+\frac{1}{n^{2}} \cos n \cdot 0\right)\right]$
$=\frac{1}{\pi}\left(\frac{1}{n^{2}} \cos n \pi-\frac{1}{n^{2}}\right)=\frac{1}{\pi n^{2}}(\cos n \pi-1)=\frac{1}{\pi n^{2}}\left((-1)^{n}-1\right)$
So:
$a_{n}=\frac{1}{\pi n^{2}}\left((-1)^{n}-1\right)=\left\{\frac{-2}{\pi(2 k+1)^{2}}, \quad n=2 k+1, \quad k=0,1,2,3 \ldots\right.$
$0, \quad n=2 k, \quad k=0,1,2,3 \ldots$

More to find:

$$
\begin{aligned}
b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin n x d x & =\frac{1}{\pi} \int_{-\pi}^{0} \pi \sin n x d x+\frac{1}{\pi} \int_{0}^{\pi} x \sin n x d x \\
& =\int_{-\pi}^{0} \sin n x d x+\frac{1}{\pi} \int_{0}^{\pi} x \sin n x d x
\end{aligned}
$$

And here we will first do the partial integration:
$\int x \sin n x d x=\left|\begin{array}{cc}x=u & \sin n x d x=d v \\ d x=d u & -\frac{1}{n} \cos n x=v\end{array}\right|=-x \cdot \frac{1}{n} \cos n x+\int \frac{1}{n} \cos n x d x=-\frac{x \cos n x}{n}+\frac{1}{n} \int \cos n x d x=$
$=-\frac{x \cos n x}{n}+\frac{1}{n} \frac{1}{n} \sin n x=-\frac{x \cos n x}{n}+\frac{1}{n^{2}} \sin n x$

Now we have :

$$
\begin{aligned}
& b_{n}=\int_{-\pi}^{0} \sin n x d x+\frac{1}{\pi} \int_{0}^{\pi} x \sin n x d x \\
& =\left(-\frac{1}{n} \cos n x\right) /{ }_{-\pi}^{0}+\frac{1}{\pi}\left(-\frac{x \cos n x}{n}+\frac{1}{n^{2}} \sin n x\right) / \prime_{0}^{\pi} \\
& =\left\{\left(-\frac{1}{n} \cos n \cdot 0\right)-\left(-\frac{1}{n} \cos n(-\pi)\right)\right\}+\frac{1}{\pi}\left\{\left(-\frac{\pi \cos n \pi}{n}+\frac{1}{n^{2}} \sin n \pi\right)-\left(-\frac{0 \cdot \cos (n \cdot 0)}{n}+\frac{1}{n^{2}} \sin (n \cdot 0)\right)\right\} \\
& =-\frac{1}{n}+\frac{1}{n} \cos n \pi+\frac{1}{\pi}\left(-\frac{\pi \cos n \pi}{n}\right) \\
& b_{n}=-\frac{1}{n}+\frac{\cos n \pi}{n}-\frac{\cos n \pi}{n} \\
& b_{n}=-\frac{1}{n}
\end{aligned}
$$

Now we can write the entire development:
$f(x)=\frac{1}{2} a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right)$
$f(x)=\frac{3 \pi}{4}-\frac{2}{\pi} \sum_{k=0}^{\infty} \frac{\cos ((2 k+1) \pi)}{(2 k+1)^{2}}-\sum_{n=1}^{\infty} \frac{\sin n x}{n}$

This series converges to the function S which, according to Dirihleovoj theorem coincides with the function f on the interval:
$[-\pi, 0) \cup(0, \pi]$ and because $\mathrm{f}(\mathrm{x})$ has interruption for $\mathrm{x}=0$, then $S(0)=\frac{f(0-0)+f(0+0)}{2}=\frac{\pi+0}{2}=\frac{\pi}{2}$
graph see in the picture:

