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Fourier series - tasks (  I- part) 

 

 

 

Example  1. 

 

 

Function   y x=   developed in Fourier series on the interval   [ , ]π π−  

 

 

Solution: 

 

 

First, we draw a picture: 
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Obviously, the function is even (figure is symmetric with respect to the y-axis), and we will use the formula: 
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Next we ask: 
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This integral will be solved with the help of partial integration, and first without borders… 
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Now we put borders: 
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Then:  
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Of course, that n takes values  1,2,3... 

 

Expression   cosnπ  have values: 

 

for n=1  is  cos =-1

for n=2  is  cos =1

for n=3  is  cos =-1
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Therefore, it holds that   cos ( 1)nnπ = −  
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Let us return now to the formula for development: 
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Example 2. 

 

Developed in Fourier series  function ( ) sgnf x x=   on the interval   [ , ]π π−  

 

Solution: 
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    Take a look : 
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We need this function on the interval [ , ]π π− : 
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Obviously, the function is odd, and using the formula : 
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Again we distinguish between odd and even members: 
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Now go back to the starting formula for development and we have: 
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Example  3. 

 

Function  
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Solution: 

 

First, we notice that a given interval  [ , ]π π− . This means we will  use the formula: 
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Beware of one thing: since the function is given in this way we have to work two integrals . In first integral borders are 

 

π−  and  0  and  function is  f(x) = π , and when borders are 0 and  π  function is f(x) = x  
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Here we have the integral of the partial integration: 

 

2

cos
1 1 sin 1

cos sin sin sin1
sin

sin 1 1 sin 1
cos cos

x u nxdx dv
x nx

x nxdx x nx nxdx nxdx
n n n ndx du nx v

n

x nx x nx
nx nx

n n n n n

= =

= = ⋅ − = − =
= =

= + = +

∫ ∫ ∫
 

 

Now we return to na : 
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More to find: 
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And here we will first do the partial integration: 
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Now we have : 
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Now we can write the entire development: 
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This series converges to the function S which, according to Dirihleovoj theorem coincides with the function f on the  

 

interval: 
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graph see in the picture: 
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